
or a redundant manipulator a region in its workspace 
that is guaranteed failure tolerant, called the failure-
tolerant  workspace,  promises completion of critical 
tasks placed within it. By judiciously choosing a set 
of  artificial  joint  limits  which  constrain  the 

acceptable  robot  configurations  prior  to  a  failure,  a  failure-
tolerant workspace can possibly exist even for manipulators with 
a  single  degree  of  redundancy.  This  work  identifies  the 
candidate  boundaries  of  failure-tolerant  workspaces,  and 
presents justification on their validity and completeness. Based 
on the identified boundaries, optimization results for a 3-degree-
of-freedom  (dof)  planar  manipulator,  as  well  as  for  a  4-dof 
planar  manipulator,  are  presented.  It  assumed  that  the 
manipulator has the ability to lock a joint that has failed, and that 
the  manipulator’s  workspace  degree  of  freedom  remains  the 
same before and after a joint failure.
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I. INTRODUCTION

An  extra  joint  in  kinematically  redundant  manipulators 
creates greater dexterity in task execution. For the end-effector 
location  of  a  kinematically  redundant  manipulator,  an  infinite 

number  of  postures  (called  configurations)  correspond  to  the 
same  workspace  location.  With  the  extra  joint,  the  redundant 
manipulator can perform the required workspace task and, at the 
same  time,  vary  its  posture  to  perform  obstacle  avoidance, 
manipulability optimization, failure tolerance, and other desired 
posture optimization criteria. 

In this work, the posture optimization criterion would be that 
of tolerance to joint failure, such that the manipulator would be 
able to perform the required workspace task before and after the 
occurrence of a joint failure. The manipulator joints are allowed 
to  be  locked  in  failure  such  that  the  workspace  degree  of 
freedom remains constant. 

Tolerance to joint failure has gained popularity among robot 
researches  because,  when  addressed  properly,  the  robot 
manipulator can be guaranteed to complete critical tasks despite 
one or  more of its  joints failing.  This is  especially applicable 
when the robot is tasked to perform work in remote or hazardous 
environments  where  direct  human intervention,  in  the case  of 
joint  failures,  is  not  possible.  For example,  robots working in 
nuclear waste disposal or robots that perform deep underwater 
explorations,  or  robots  that  are  sent  to  space.  In  these  cases, 
robot repair during joint failures could mean additional cost due 
to the delay, or could possible pose danger to human life.

When  a  failure-tolerant  workspace  for  a  given  robot  is 
already  identified,  the  robot  user  will  only  have  to  specify 
locations  of  critical  tasks to be within this region in  order  to 
guarantee completion despite one or more of the robot’s joints 
failing.  Further,  identifying  the  maximum  possible  region  of 
such a workspace would mean more tasks that can be possibly 
specified at a given time for the manipulator. 
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From the pioneering work on kinematic failure tolerance for 
redundant  manipulators  (Maciejewksi  1990),  many  related 
studies have been performed. These include design enhancement 
for  failure tolerance  including kinematic  redundancy and dual 
actuation (Monteverde and Tosunoglu 1997), presentation of an 
analysis tool to determine the fault-tolerant workspace when no 
joint  limits  are  considered  (Paredis  and  Khosla  1994),  failure 
tolerance in the domain of mechanical systems (Sreevijayan et 
al. 1994), failure tolerance by considering both kinematics and 
dynamics of the manipulator (Li and Gruver 1998), examination 
of the reduced manipulability of a manipulator after one or more 
joint  failure  (Roberts  and  Maciejewski  1996),  real-time 
implementation (Groom et al.  1999), and when obstacles in the 
environment are considered (Paredis and Khosla 1996).

Among  the  more  recent  studies  in  kinematic  failure 
tolerance include failure tolerance for cooperative manipulators 
rigidly  connected  to  a  solid  object  (Tinos  et  al.  2002),  fault 
detection and tolerance for static walking of rigid robots, where 
each leg has three revolute joints (Yang 2002), fault tolerance 
for  parallel  manipulators  using  task  space  and  kinematic 
redundancy (Yi et al. 2006), characterization of optimally fault-
tolerant  manipulators  based  on  relative  manipulability  index 
(Roberts  et  al.  2007),  designing  the  nominal  manipulator 
Jacobian for optimal fault tolerance to one or more joint failures, 
especially  for  parallel  mechanisms  (Roberts  et  al.  2008), 
quantification of optimal faut-tolerant manipulability for Stewart 
platforms  (Ukidve  et  al.  2008),  and  using  neural  network  for 
failure-tolerant  control  of  redundant  robots  (Srinivasa  and 
Grossberg 2007).

A new approach to obstacle avoidance with failure tolerance 
is shown in Jamisola et al. (2003) and Jamisola et al. (2006). The 
existence of an obstacle-free surface in the configuration space 
(C-space)  with no local  minimum guarantees  task completion 
despite joint failures and obstacles in the workspace. Start and 
goal  locations were specified and the position of the obstacles 
was  known.  A  related  problem  to  the  mentioned  work  is  to 
identify  the workspace  region  that  is  known to be  tolerant  to 
failure,  without  consideration  for  obstacles.  A  previous  work 
(Paredis  and  Khosla  1996)  stated  that  one  needs  at  least  two 
degrees of redundancy for a failure-tolerant workspace to exist 
on a given redundant manipulator. This limitation was overcome 
by imposing artificial joint limits prior to a failure (Lewis and 
Maciejewski 1997). Because reachability of workspace locations 
after a failure is dependent on the manipulator configuration at 
the instance of failure,  constraining the allowable joint  values 
prior  to  a  failure  will  ensure  certain  workspace  locations  to 
remain reachable after a joint failure. 

A  more  recent  work  showed  that  the  boundaries  of  the 
failure-tolerant workspace are identifiable (Roberts et al. 2007). 
This removed significant computational burden because, instead 
of  computing  for  the  entire  failure-tolerant  region,  only  its 
boundaries are identified. However, for much higher degrees of 
redundancy this may not be necessarily true. 

This work will try to build on the results of Roberts et al. 
(2007)  and  will  present  justifications  on  the  validity  and 
completeness  in  identifying  the  candidate  boundaries  of  the 
failure-tolerant  workspace.  In  addition,  optimal  results  and 
analysis  for  a  3-dof  planar  manipulator  with  constant  and 
variable link lengths, as well as for a planar 4-dof manipulator 
with  constant  link  lengths,  will  be  presented.  Planar 
manipulators  are  chosen  as  implementation  platforms  for 
simplicity and clearer presentation of results. The 3-dof planar 
manipulator (both constant and variable link lengths) is used to 
illustrate the case where only a single joint failure is allowed, 
while the 4-dof planar manipulator (with equal link lengths) is 
shown for the case where one or two joints can fail at any given 
time. Higher degrees of freedom workspaces will be considered 
in future implementations.

II. AN OVERVIEW OF THE PROPOSED APPROACH

Before proceeding with the gradient method of identifying 
the  optimal  failure-tolerant  workspace,  a  global  brute-force 
computation  of  the  3-dof  robot  with  equal  link  lengths  was 
performed. The value of the artificial joint limits was varied and 
the corresponding failure-tolerant workspaces are computed. The 
results  shown in Fig.  1,  which approximately agrees  with the 
optimal results found in Lewis and Maciejewski (1997), gave a 
global perspective on the extent of the failure-tolerant workspace 
region as  the artificial  joint  limits were varied.  For redundant 
manipulators, a workspace location  x   ∈ R m and a manipulator 
configuration  q   ∈ R n such  that  n  >  m.  The  Jacobian  matrix 
relates the incremental change in the manipulator configuration, 
 δq,  to that of the incremental change in the manipulator end-
effector location, δx, 

δx = J  δq (1)

where  J   ∈ R m×n.  A given manipulator’s  reachable  workspace, 
without consideration to joint failures, will be called a normal 
workspace and labeled  W .  When joint failures are considered, 
the resulting reachable workspace after a failure is dependent on 
the manipulator configuration at the instance of failure. Thus the 
resulting  failure-tolerant  workspace  is  dependent  on  the 
allowable range of joint values imposed on the manipulator prior 
to a failure. For a given manipulator, the problem becomes that 
of searching for a set of artificial joint limits that will maximize 
the failure-tolerant workspace. In the event of a joint failure, the 
artificial joint limits are released and the physical limits become 
the new joint  limits.  The failure-tolerant  workspace is  labeled 
W S (S for “safe”). A reachable workspace location is tolerant to a 
joint failure if it remains reachable after a failure. This location 
is  labeled  as  xS such  that  xS  ∈ W S.  Because  the  manipulator 
configuration at the instance of failure is not known, one has to 
consider all the possible  W’s for every possible joint failure to 
be  able  to  identify  W S.  The  intersection  of  all  the  possible 
workspaces  corresponding  to  every  possible  joint  failure(s)  is 
labeled  WF (F  for  “failed”).  This  workspace  can  also  be 
interpreted as the workspace that is guaranteed reachable after 
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any joint failure. The reachable workspace prior to a joint failure 
is  labeled  WO (O  for  “original”).  The  resulting  W S is  the 
intersection of WF and WO, 

W S = WO ∩ WF . (2)

Techniques  will  be  discussed  on  how  to  identify  the 
boundaries of W S to ease the burden of computation.

III.  CANDIDATE  BOUNDARIES  OF  THE  FAILURE-
TOLERANT WORKSPACE

For a normal workspace W , a reachable workspace location 
x  lies  at  the  boundary  if  there  exists  a  small  incremental 
displacement δx such that x +δx is not reachable. It is

characterized by either a manipulator singularity or a joint 
limit singularity, also called semi-singularity (Luck 1995). This 

is formally stated below.

Definition 1.  The boundaries of  a normal workspace are  
characterized by either manipulator singularities or joint limit  
singularities.

When a joint failure occurs, the resulting failed manipulator 
will have a corresponding new reachable workspace  W'  whose 
boundaries now correspond to the singularities of the resulting 
failed manipulator and singularities of the new joint limits. From 
Eqn.  2  and  assuming  W S exists,  the  boundaries  of  W S are 
characterized by the singularities of the original manipulator, the 
singularities  of  the  failed  manipulator,  and  the  joint  limit 
singularities.  At  this  point,  we have sufficiently described  the 
candidate  boundaries  of  W S.  Let  us  formally  present  this 
statement below.
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Figure 1.  A global  plot  of  the failure-tolerant  workspace for a 3-dof planar  manipulator with  equal  link  lengths.  The plot  has a 
resolution of 10 degrees such that the black contours are approximately 4000 sq. units, the gray contours are approximately 2000 sq. 
units, and the white contours are approximately 1 sq. unit. It is shown that the maximum area lies around the range of θ1 = [0,50], θ2 = 
[50,150], and θ3 = [80,120] degrees.



The  boundaries  of  a  failure-tolerant  workspace  can  be 
characterized by three types of manipulator singularities:

• Singularity of the original manipulator
• Singularity of the failed manipulator
• Joint limit singularity

Justification for their validity will be presented. Because the 
workspaces consisting WF are infinitely many, further discussion 
will  be  given  on  how  to  identify  the  boundaries  of  WF by 
considering  only  a  number  of  workspaces  that  make  up  its 
boundaries.  The  true boundaries  of  W S can  be determined  by 
checking the tolerance to failure of every candidate boundary.

A. Singularity of the Original Manipulator
Given a configuration q such that det(JJT)=0. At x = f(q) the 

manipulator loses at least one degree of freedom such that there 
exists an  x+δx  that is not reachable.  The location  x  is said to 
correspond to an escapable singularity if there exists a different 
configuration q’ such that x = f(q’) and x+δx becomes reachable 
for all δx's. In this case, x does not lie on a true boundary of W .

On  the  other  hand,  a  different  location  x  is  said  to 
correspond to an inescapable singularity if x=f(q) and det(JJT)= 
0  for  all  q's  corresponding  to  x.  In  this  case,  x  lies  at  a 
workspace boundary. In equation form, 

x  ∈ ∂W  if x = f(q) and det(JJT)=0   ∀q = f−1(x)  (3)

where ∂W is the boundary of the workspace W . We are now 
ready to characterize the singularity of the original manipulator 
as a candidate boundary of W S.

Lemma 1: Singularity of original manipulator characterizes 
a candidate boundary of the failure-tolerant workspace.

Proof: From  Def.  1,  the  singularity  of  the  original 
manipulator  characterizes  the  boundaries  of  WO,  such  that  a 
workspace  location  x  corresponding  to  an  inescapable 
singularity lies exactly at the boundary of  WO from Eqn. 3. By 
Eqn. 2, a boundary of WO may lie at the boundary of W S which 
makes  the  singularity  of  the  original  manipulator  a  candidate 
boundary of W S. 

In  an  event  of  a  failure,  an  escapable  singularity  of  the 
original manipulator may become an inescapable singularity of 
the  resulting  failed  manipulator.  This  will  correspond  to  the 
second candidate boundary of W S.

B. Singularity of the Failed Manipulator
Let  JF be the Jacobian of the resulting manipulator after a 

failure where the corresponding column(s) of the failed joint(s) 
is truncated, such that JF  ∈ R m×p and p=n−1,…,m. To search for 
the  singularity  of  the  every  possible  failed  manipulator  is  to 
search for every possible JF and its corresponding det(JFJF

T) = 0.

Lemma  2: Singularity  of  the  failed  manipulator 
characterizes  a  candidate  boundary  of  the  failure-tolerant 
workspace.

Proof:  Let  us  consider  that  the  failed  manipulator  is  a 
different manipulator that is independent from the original one. 
By Def. 1, the new workspace boundaries can be characterized 
by the singularities of its corresponding new manipulator, such 
that  the  inescapable  singularities  exactly lie  at  its  boundaries. 
Because  WF results from the intersection of all  these possible 
new  workspaces,  from  Eqn.  2  the  boundaries  of  each  new 
workspace are possible boundaries of WF as well as of W S. 

Not all new workspaces resulting from a failure will define 
the boundaries of WF. It is imperative to be able to characterize 
the boundaries of WF to lessen the computational burden.

C. Joint Limit Singularity
Joint limit singularity is further subdivided into two types: 

tangent  and  edge  singularities.  A  tangent  singularity  is 
equivalent to the singularity of the failed manipulator when the 
joint  failed at  the limit.  An edge  singularity corresponds  to a 
configuration at the edge (or corner) of the C-space.

Lemma 3: Joint limit singularity characterizes a candidate 
boundary of the failure-tolerant workspace.

Proof: By Definition 1, joint limit singularities characterize 
the boundaries of WO. For every possible joint failure, a new set 
of  joint  limits  will  characterize  each  resulting  manipulator’s 
workspace, and are candidate boundaries of WF as well as of W S. 

As  in  the  failed  manipulator  singularity,  the  joint  limit 
singularity  also  considers  every  possible  failed  manipulator’s 
workspace. This section sufficiently identifies all the candidate 
boundaries of W S.

IV.  CHARACTERIZING  THE  CANDIDATE  BOUNDA-
RIES OF WF

To present justification for the candidate boundaries of WF, 
we first introduce the concept of self-motion manifolds. The self-
motion manifolds of  workspace  location  x  =  f(q)  are  disjoint 
connected subsets of the pre-image  f−1(x). Given a manipulator 
with r-degree of redundancy,

where M i is the r-th dimensional self-motion manifold and N is 
the number of self-motion manifolds, such that when i ≠ j, M i ∩ 
M j = ∅ (Burdick 89).

From Eqn. 2 and given a failure-tolerant workspace location 
x we can state that
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x  ∈ W S ⇔ x  ∈ WO and x  ∈ WF . (5)

The first  term can be satisfied if  there  exists at  least  one 
configuration  q  such that  x  =  f(q)  is  reachable  before  a  joint 
failure. The second term is trickier by the fact that for a given 
workspace location x, there must exist a connected portion of the 
self-motion manifold, within the joint limits, that can maintain 
reachability  of  x  after  a  joint  failure.  This  will  guarantee 
reachability of x for any joint failures within the set limits.

Definition 2. A workspace location is guaranteed reachable  
after a joint failure if there exists a connected portion of the self-
motion manifold that spans the entire range of values within the 
joint limits.

We are now ready to identify the candidate boundaries of 
WF. This is stated as a theorem below.

Theorem 1: The  changes  in  the  topology of  the  C-space 
characterize the candidate boundaries of WF.

Proof:  The  satisfaction  of  the  failure-tolerance  test,  i.e., 
reachability  of  x  for  any  joint  failure,  is  dependent  on  the 
connectedness of the corresponding self-motion manifold within 
the set limits. A topological change in the C-space results in a 
characteristic  change  of  the  self-motion  manifolds  and  their 
connectedness. As a manipulator configuration passes through a 
topological change in the C-space, the satisfaction of the failure-
tolerance  test  can  vary.  Such  possible  variation  in  the 
satisfaction  of  the  failure-tolerance  test  characterizes  the 
candidate boundaries of WF. 

The changes in the C-space topology can be internal or at a 
C-space  boundary.  An  internal  C-space  topological  change 
occurs  at  the  original  manipulator’s  singularity,  while  the 
topological  change  at  the  C-space  boundary  occurs  at  a  joint 
limit singularity.

The  self-motion  manifold  corresponding  to  an  escapable 
singularity of the original manipulator may span an entire range 
of a set of joint values in the configuration space.

When this  set  of  joint  values  corresponds  to  the possible 
joint failures,  failure tolerance is guaranteed.  Its  adjacent self-
motion manifolds may not be connected within the limit.

The self-motion manifold that is tangent at a joint limit has 
the  possibility  of  satisfying  the  failure-tolerance  test  for  the 
corresponding joint. Close to it, there exits another self-motion 
manifold that fell short of touching the joint limit and therefore 
cannot satisfy the connectedness within the limit.

At the edge of the C-space, a self-motion manifold intersects 
more than one joint limit. This self-motion manifold may satisfy 
the failure-tolerance test for the corresponding joint limit. At its 

vicinity,  another  self-motion manifold that  intersects  only one 
joint limit  cannot satisfy the failure-tolerance test of the other 
joint limit.

Now that the candidate boundaries of WF are identified, the 
candidate boundaries of W S are modified as follows:

• Singularity of the original manipulator
• Tangent singularity
• Edge singularity
The  next  subsection  will  be  a  step-by-step  approach  of 

finding the candidate boundaries of W S.

V. ALGORITHM OF THE PROPOSED APPROACH

Consider that a failure-tolerant workspace exists for a given 
manipulator and a set of artificial joint limits. The boundaries of 
W S are identified through the following steps:

1) Search for the singularities of the original manipulator, 
det(JJT)  =  0,  and  compute  their  corresponding 
workspace locations.

2) Search for the tangent singularities such that det(JFJF
T) 

=  0  for  p  =  n  −  1,…,m,  and  compute  for  their 
corresponding workspace locations.

3) Search for the edge singularities and compute for their 
corresponding workspace locations.

4) Determine  the  intersections  between  the  candidate 
boundaries.

5) Test  each  segment  of  the  candidate  boundaries  for 
tolerance to joint failures.

VI. OPTIMAL FAILURE-TOLERANT WORKSPACES

The  optimal  results  shown  in  this  work  used  planar 
workspaces.  The  joint  limits  are  symmetric  and  so  are  the 
resulting  W S’s thus the area computation is performed on one 
side of  W S and is  multiplied  by two.  Symmetry  of  the joints 
limits are commonly used by industrial robots. The area of the 
failure-tolerant workspace was computed by taking the integral 
for each true boundary over a free joint, that is, 

AWS = 2 ∑ ∫
=

B
ib

ia

n

i

q

q
1

 B dqi (6) 

where AWS is the area of W S, B is a segment of the true boundary, 
qia and qib are the limits of the free joint qi, and nB is the number 
of segments of the true boundary. Optimization computation was 
performed using the gradient ascent method such that at every 
computational cycle t,
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Figure 2. The optimal  WS for a 3-dof robot with equal link lengths is shown. The workspaces  W1,  W2, and W3 are the WF ’s for the 
corresponding joint failure. The symmetric artificial joint limits are [(+/-)18, (+/-)111, (+/-)111]T degrees, and WS has an area of 3.56 sq. 
units where each link has 1 unit length.

Figure 3. The figure shows the plots of AWS at the slices of the optimal artificial joint limits of [(+/-)18, (+/-)111, (+/-)111]T degrees for the 
3-DOF planar robot with equal link lengths. The contour lines are at 0.313 sq. units apart. The white portion shows the vicinity of the 
optimal AWS.
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Figure 4. The figure shows the optimal WS of a 3-dof robot that 
is kinematically designed to maximize AWS = 3.71 sq. units. The 
optimal  WS is shown as the black region. The link lengths are 
[1.2,0.6,1.2]T units with symmetric artificialjoint limits of [(+/-)11, 
(+/-)128, (+/-)128] degrees

Figure 6. Optimized AWS = 0.3380 m2 for the PA-10 that is used 
as  a  3-dof  planar  robot  is  shown.  The  link  lengths  are 
[0.45,0.5,0.45]T m,  the artificial  joint  limits are [(+/-)32,  (+/-)92,  
(+/-)92]T degrees, and the physical  limits are  [(+/-)90, (+/-)135, 
(+/-)160]T degrees.

Figure 5. The figure shows slices at the optimal AWS in Fig. 4. The contour lines are at 0.313 sq. 
units apart. The white portion shows the vicinity of the optimal  AWS . Three subfigures show the 
slices where one of the optimal artificial joint limits and the optimal link lengths are held constant. 
The fourth subfigure showed L1 = 1.2−(L2 +L3), and all optimal artificial limits are constant.
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Figure 7. The figure shows the corresponding workspaces for a 4-dof planar robot with equal link lengths [0.3,0.3,0.3,0.3]T units and 
the optimal artificial limits [(+/-)7,  (+/-)110,  (+/-)110,  (+/-)110]T degrees such that its workspace is identical to that of the 3-dof planar 
robot.

Figure 8. An optimal case for a 4-dof planar with two joints failing is shown in the figure that has an area of AWS = 0.0581 sq. units. The 
link lengths are equal at [0.3,0.3,0.3,0.3]T units and the artificial joint limits are [(+/-)11, (+/-)11, (+/-)48, (+/-)107]T .



where v can be a function of both artificial joint limits and link 
lengths when manipulator design is considered, and γ is the step 
size. Because the computation is local in nature, random starting 
values for the variable v were used, and random steps around the 
vicinity  of  a  local  maximum  were  taken  until  the  maximum 
allowable  computational  cycle  is  reached.  The  vicinity  of  the 
optimal  value  for  the  3-dof  equal  link  length  case  has  been 
previously  known  from  the  brute-force  computation,  so  the 
starting configuration for this case was easily chosen.

Optimization results for 3-dof planar robot with equal link 
lengths,  and of a 3-dof planar robot with variable link lengths 
will be presented. To support  the validity of these results,  the 
information regarding the C-space slices at the optimal failure-
tolerant workspace value is shown. In addition, optimal results 
of the PA-10 robot that is used as a 3-dof planar robot, of a 4-dof 
planar robot with single joint failure, and of a 4-dof planar robot 
with 2-joint failure are presented.

Optimal  results  of  a  3-dof  planar  robot  with  equal  link 
lengths are shown in Fig. 2. The workspaces  W i's are the  WF's 
for the corresponding joint  i. Slices at the optimal value of  AWS 

corresponding to a symmetric artificial joint limits of  [(+/-)18, 
(+/-)111, (+/-)11]T are shown in Fig. 3. The white portion is the 
vicinity of  the optimal  value.  At  each  slice,  an artificial  joint 
limit value is held constant  while the other two artificial joint 
limits are linearly varied. The contour lines are at 0.313 sq. units 
apart.  This  optimal  value  is  a  13% increase  to  that  found in 
Lewis and Maciejewski (1997).

The ridge  for each  subfigure in Fig.  3 corresponds to the 
switching of the candidate boundary (due to tangent singularity) 
between W 2 and W 3, depending on which one is a true boundary. 
The artificial joint limits for joints 2 and 3 have to be equal to 
maximize  the  region  of  intersection  between  W 2 and  W 3.  Its 
outer boundary is the most influential boundary of W S such that 
a change in the joint 2 or 3 value can significantly decrease the 
area of W S, as shown in Fig. 3.

The second case considers a 3-dof planar robot such that its 
links are allowed to vary in lengths. The resulting WO is identical 
to  the  equal  link  length  case.  The  optimal  result  has  a  link 
lengths  of  [1.2,0.6,1.2]T  ,  and  the  artificial  joint  limits  are 
[(+/-)11, (+/-)128, (+/-)128]T degrees. Due to the links not being 
equal, W 1 has an inner boundary as shown in Fig. 4. Intuitively, 
one may think that the optimal value of  AWS compared to the 
equal link case is lesser because of this. However in the resulting 
optimal W S, the hole did not have any contribution when all its 
corresponding  boundaries  were  intersected.  In  addition,  the 
location of  the inner boundary of  W 2 and  W 3 is  closer  to the 
origin compared to the equal link length case. The resulting AWS 

has a 4.2% increase from the equal link length case.
Slices  at  the optimal  AWS for  the 3-dof with variable  link 

lengths are shown in Fig. 5. For the first three subfigures, two 
joint limits values are varied and the other joint limit and the link 
lengths  are  held  constant  at  the  optimal  value.  The  fourth 

subfigure held the optimal artificial joint limits constant  while 
the L2 and L3 link lengths are varied, such that  L1 =1.2− (L2+ 
L3). Ridges on the topology have similar characteristics as those 
of the equal link length case, for the subfigures where the link 
lengths are held constant and the joint values are changing. An 
additional  ridge  that  is  less  sharp  is  due  to  the  hole  in  the 
workspace created by the inner boundary of  W 1.  The ridge in 
fourth subfigure is caused by the switching of the boundaries of 
W 2 and W 3, whichever becomes the true boundary.

Optimization of  AWS for the PA-10 that is used as a 3-dof 
planar  robot  is  shown in Fig.  6.  Links  2,  4,  and  6 with  link 
lengths  [0.45,0.5,0.45] m and physical limits  [(+/-)90, (+/-)135, 
(+/-)160]T degrees were used. The rest of the links were locked. 
At the optimal  AWS=0.3380 m2 the artificial joint limits are  [32, 
92, 92]T degrees.  This example shows the case when physical 
limits  were  present.  It  upholds  the fact  that  present  industrial 
robots with a single degree  of  redundancy have the ability to 
become  failure  tolerant  by  judiciously  constraining  the  joint 
values prior to a failure.

In considering the 4-dof planar robot, the link lengths were 
chosen to be equal to each other at  [0.3,0.3,0.3,0.3]T units such 
that its WO is identical to that of the 3-dof equal link length case. 
For a single locked-joint failure, the problem becomes that of a 
3-dof planar robot where one of its link lengths is derived from 
the  configuration  of  the  locked  joint.  The  optimal  results  are 
shown in Fig.  7.  The optimal  AWS =  1.9115 sq.  units  and the 
corresponding set of artificial  joint limits are  [(+/-)7, (+/-)110,
(+/-)110,(+/-)110]T degrees. The shown optimal AWS is 3.2 times 
that for the kinematically designed.

When two joints are allowed to fail in the 4-dof planar robot, 
the optimal W S area is reduced significantly as shown in Fig. 8. 
The workspaces W ij's are the WF's for the corresponding joints i  
and j. Not all WF's from two joints failing define the boundaries 
of  W S. It is shown that the boundaries are defined by WO,  W 12, 
and W 34.

VII. SUMMARY AND CONCLUSION

This  work  has  characterized  the  candidate  boundaries  of 
failure-tolerant  workspaces,  and has presented justifications on 
their  validity  and  completeness.  Optimal  results  for  planar 
manipulators with single as well  as double joint failures  were 
presented.  This  work  further  supported the claim that  failure-
tolerant  workspaces  exists,  even  for  present  industrial  robots 
with  a  single  degree  of  redundancy.  Future  research  work  is 
geared towards optimizing failure-tolerant workspaces for full-
spatial redundant manipulators.
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